3. Integration of Information from Multiple
Sources of Textual Data

1,2

Sonia Bergamaschil*? and Domenico Beneventano!

! Dipartimento di Scienze dell’Ingegneria Universit di Modena, Italy.
E-Mail: sbergamaschi@deis.unibo.it

2 CSITE - CNR, Universita di Bologna, Italy.
E-Mail: sonia@dsi.unimo.it

3.1 Introduction

The number of information sources in the Internet is exponentially increas-
ing. As a consequence, for a given query, the set of potentially interesting
sites is very high but only very few sites are really relevant. Furthermore,
informations are highly heterogeneous both in their structure and in their
origin. In particular, not only data types are heterogeneous (textual data,
images, sounds, etc.), but even the representation of a single data type can
differ.

Even in the restricted domain of textual data, the problem of organizing
data (often a huge amount) coming from multiple heterogeneous sources in
easily accessible structures, in order to provide true information, is a chal-
lenging research topic for different research communities: database, artificial
intelligence, information retrieval. Let us individuate two increasing complex-
ity scenarios:

1. known sources — the sources of heterogeneous textual data are known;
2. unknown sources — the sources of relevant heterogeneous textual data
must be individuated.

The first scenario is, at present, heavily investigated in the database area,
involving many research topics and application areas: decision support sys-
tems (DSS), integration of heterogeneous databases, datawarehouse. Deci-
sion makers need information from multiple heterogeneous sources (includ-
ing databases, file systems, knowledge bases, digital libraries, information
retrieval systems, and electronic mail systems), but are usually unable to get
and fuse them in a timely fashion due to the difficulties of accessing the dif-
ferent systems and to consistently integrate them. Significant contributions
about the integration of well-structured conventional databases exist (e.g.
[5, 42, 262, 342, 389, 668]). Many projects have adopted Object Oriented (O0)
data models to facilitate integration [5, 105, 505] and, recently, systems for the
integration of sources with minimal structure have appeared [223, 503, 620].
Furthermore, the DARPA Intelligent Integration of Information (I®) research
program is devoted to this problem. However, as a consequence of the rapid
development of prototype implementations in this area, the initial outcome

56 S. Bergamaschi and D. Beneventano

of this program appears to have been to produce a new set of systems. While
they can perform certain advanced information integration tasks, they can-
not easily communicate with each other. With a view to understanding and
solving this problem, a workshop was held on this topic at the University of
Maryland in April, 1996 [98, 724].

The second, most complex scenario, is associated to the so-called infor-
mation discovery problem. This problem arised mainly due to the Internet
explosion. In this scenario we have, first, to face the problem of individuating
among a huge amount of sources of heterogeneous textual data a possibly low
amount of relevant sources and, then, to face, if necessary, the problem of
scenario 1. Research efforts devoted to face this problem come from differ-
ent research areas: information retrieval, artificial intelligence, database. This
scenario is out of the scope of this chapter as the amount of approaches and
systems very recently proposed is as large as to require a paper on its own.

In this chapter we will discuss problems and solutions of the extrac-
tion/integration of information from multiple sources, highly heterogeneous,
of textual data and of their integration in order to provide true information.
Main problems to be faced in integrating information coming from distributed
sources are related to structural and implementation heterogeneity (including
differences in hardware platforms, DBMS, data models and data languages),
and to the lack of a common ontology, which leads to semantic heterogeneity.
Semantic heterogeneity occurs when different names are employed to repre-
sent the same information or when different modeling constructs are used
to represent the same piece of information in different sources [342]. Some
approaches have been recently proposed in the literature for the extraction
and integration of conventional structured databases [90] and semi-structured
data [99, 111] taking into account semantic heterogeneity. Data integration
architectures are usually based on mediators [722], where knowledge about
data of multiple sources is combined to provide a global view of the un-
derlying data. Two fundamental approaches have emerged in the literature:
structural [230, 566] and semantic [18, 57, 90].

There are many projects following the “structural approach” [64, 88, 158].
This approach can be characterized as follows (considering TSIMMIS [461]
as a target system):

— a self-describing model where each data item has an associated descriptive
label and without a strong typing system;
— semantic information are effectively encoded in rule that do the integration.

Let us introduce some fundamental arguments in favour of the “structural
approach”:

1. the flexibility, generality and conciseness of a self-describing model makes
the “structural approach” a good candidate for the integration of widely
heterogeneous and semistructured information sources;

3. Integration of information from Multiple Sources 57

2. a form of first-order logic languages that allow the declarative specifica-
tion of a mediator is provided; a mediator specification is a set of rules
which defines the mediator view of the data and the set of functions that
are invoked to translate objects from one format to another.

3. the schema-less nature of modelled objects is particularly useful when a
client does not know in advance the labels or structure of the objects of
a source.

— In traditional data models, a client must be aware of the schema in
order to pose a query. With this approach, a client can discover the
structure of the information as queries are posed.

— A conventional OO language breaks down in such a case, unless one
defines an object class for every possible type of irregular object.

Many other projects follow a “semantic approach” [17, 18, 105, 298, 271, 566].
This approach can be characterized as follows:

— for each source, meta-data, i.e. conceptual schema, must be available;

— semantic informations are encoded in the schema;

— a common data model as the basis for describing sharable information must
be available;

— partial or total schema unification is performed.

Let us introduce some fundamental arguments in favour of a “semantic ap-
proach” adopting conventional OO data models:

1. the schema nature of conventional OO models together with classification
aggregation and generalization primitives allows to organize extensional
knowledge and to give a high level abstraction view of information;

2. the adoption of a schema permits to check consistency of instances with
respect to their descriptions, and thus to preserve the “quality” of data;

3. semantic information encoded into a schema permits to efficiently extract
informations, i.e., to perform query optimization;

4. arelevant effort has been devoted to develop OO standards: CORBA [485,
481, 638] for object exchanging among heterogeneous systems; ODMG93
for object oriented databases [112];

One of the most promising line of research in this environment is the virtual
approach [300]. It was first proposed in multidatabase models in the early
80s [389, 668]. More recently, systems have been developed based on the
use of description logics [17, 377] such as CLASSIC [76]. All of the virtual
approaches are based on a model of query decomposition, sending subqueries
to source databases, and merging the answers that come back. Recent systems
based on description logics are focused primarily on conjunctive queries (i.e.,
expressible using select, project and join), and have more the flavor of the
Open World Assumption - the answer provided through an integrated view
will hold a subset of the complete answer that is implied by the underlying
databases. For the schema, a “top-down” approach is used: in essence a global

58 S. Bergamaschi and D. Beneventano

schema encompassing all relevant information is created, and data held in
the source databases is expressed as views over this global schema [680].
See [17, 376, 378, 680] for some of the algorithms used in this approach.

In order to show and discuss the “structural approach”, one of the most
interesting projects, TSIMMIS, is presented. Then, a virtual description logics
based approach, the MOMIS project, is introduced.

The outline of the chapter is the following. Section 3.2 is devoted to
present the TSIMMIS system! and section 3.3 is devoted to present the
MOMIS project. Section 3.2 begins with an overview of the TSIMMIS project,
including the OEM data model and the MSL language adopted in the project.
Subsection 3.2.2 describes the architecture of a TSIMMIS wrapper, i.e., an
extractor of informations from a textual source which convert data into the
OFEM data model. Subsection 3.2.3 describes the TSIMMIS approach for gen-
erating a mediators, i.e., an integration and refinement tool of data coming
from wrappers.

Section 3.3 begins with an overview of the MOMIS project. Subsec-
tion 3.3.1 presents the MOMIS architecture, the ODL;s language and the
overall approach. Subsection 3.3.2 and subsection 3.3.3 presents the gen-
eration of the mediator global schema and the Global Schema Builder, re-
spectively. In subsection 3.3.4 an overview of description logics formalism
and related inference techniques plus the obd system are presented. Subsec-
tions 3.3.5 shows the role of ODB-Too0LS in the MOMIS project. Section 3.4
presents some final remarks.

Remarks all over the chapter fix relevant choices which lead to the design
of an I® systems as MOMIS.

3.2 The TSIMMIS Project

Let us introduce the problems and the solutions recently proposed within sce-
nario 1, by describing one of the most interesting projects: the TSIMMIS
(The Stanford- IBM Manager of Multiple Information Sources) Data Inte-
gration Project, under development at the Department of Computer Science
- University of Stanford (biblio references: http://db.stanford.edu). TSIM-
MIS is a joint project between Stanford and the IBM Almaden Research
Center whose goal is the development of tools that facilitate the rapid inte-
gration of heterogeneous textual sources that may include both structured
and unstructured data [461].

The TSIMMIS data-integration system provides integrated access via an
architecture that is common in many other projects: wrappers/translators
[105, 221, 505] convert data into a common model; Mediators combine, in-
tegrates or refines the data from the wrappers. The wrappers also provide

! This section is a resume taken from papers of the TSIMMIS project. The con-
tribution of the authors of this chapter is restricted to the remarks.

3. Integration of information from Multiple Sources 59

Application I
Mediator
| Mediator
Generator

Mediator

Fig. 3.1. Tsimmis Architecture

a common query language for extracting informations. Applications can ac-
cess data directly through wrappers but they can also go through mediators
[503, 505, 722].

In Figure 3.1, the TSIMMIS architecture is shown: above each source
is a translator (wrapper) that logically converts the underlying data objects
to a common information model; above the translators lie the mediators.
The translator converts queries over information in the common model into
requests that the source can execute and data extracted from the source
into the common model. The common model is the OEM (Object Exchange
Model), a tagged model allowing simple nesting of objects. Furthermore, two
query languages, OEM-QL and MSL (Mediator Specification Language), for
requesting OEM objects have been developed. OEM-QL is an SQL-like lan-
guage, extended to deal with labels and object nesting and MSL is a high level
language that allows the declarative specification of mediators. The possible
bottlenecks of the above architecture are:

— an ad-hoc translator? must be developed for any information source;
— implementing a mediator can be complicated and time-consuming.

Thus, important goals of the project (and of any other project with the
same aim) are:

1. to provide translator generator that can generate OEM translator
based on a description of the conversion that need to take place for queries
received and results returned (see wrapper/generator box in Figure 3.1);

2. to automatically or semi-automatically generate mediators from
high level descriptions of the information processing they need to do (see
mediator/generator box in Figure 3.1).

? translator and wrapper are synonymous in TSIMMIS.

60 S. Bergamaschi and D. Beneventano

The solutions proposed in TSIMMIS for the above goals are described in
Section 3.2.2 and 3.2.3.

3.2.1 The OEM Model and the MSL Language

Let us briefly introduce the OFEM model [505]. It is a self-describing model
[416] where each data item has an associated descriptive label and without a
strong typing system. OEM is much simpler than conventional OO models:
supports only object nesting and object identity, while other features, such
as classes, methods and inheritance are not supported directly. An object
description in OEM with a top-level object (ob1) and five sub-objects (sub1
to sub5) has the format:

<obl: person, set, {subl,sub2,sub3,sub4,sub5}>
<subl: last name, str, ’Smith’>
<sub2: first name, str, ’John’>
<sub3: role, str, ’faculty’>
<sub4: department, str, ’cs’>
<subb: telephone, str, ’32435465’>

Each OFEM object has the following structure: an object-id, a label, a type, a
value. A label is a variable-length string describing what the object represents.

Remark 1. A relevant feature of OEM is that objects sharing the same label
do not follow a unique schema: for example an other object with the same label
’person’ could have different sub-objects. This feature make the integration of
data coming from heterogeneous sources with different schemas easier than
in conventional OO data models.

Let us briefly introduce the MSL language [503] (a more detailed description
is given in Section 3.2.3). MSL is a first-order logic language that allow the
declarative specification of mediators; an MSL specification is a set of rules
which define the mediator view of the data and a set of functions that are
invoked to translate objects from one format to another. Each rule consists of
a head and a tail separated by the symbol : -. The tail describes the pattern of
the objects to be fetched from the source, while the head defines the pattern
of the top-level integrated object supported by the mediator.

3.2.2 The TSIMMIS Wrapper Generator

TSIMMIS includes a toolkit, say OFEM Support Libraries, to quickly imple-
ment wrappers, mediators and end-user interfaces. These libraries contain
procedures that implement the exchange of OEM objects and queries between
a server (either a translator or a mediator) and a client (either a mediator,
an application or an interactive end-user) and procedures to translate queries
into a suitable format.

The architecture of wrappers generated by using the toolkit is shown in Fig-
ure 3.2:

3. Integration of information from Multiple Sources 61

CLIENT I Client Support Library
e
Query OEM Result
WRAPPER R 2 OEM Result
LServer Support Library : . .
777777777 Filter Processor 1
Filter Filter ~ Jx — 7 = 7 °©
QDTL Description Q\leryi ?OEM Result of Supporting Query

1
Parse Trees/ Filters of Maximal

pporting Querics v ! Query OEM Objects ~ © ~ = |
Cost Query/Description| &~ | DRIVER 1<— Packager

i Matchin; ! PO
Estimator g \ Object Components !

Parse Trees of directly/ |
logically supported
query

| Parse Trees of "Optimal
| Supporting Queries

|
CONVERTER Native Query | | Submit || Collect S ' Extractor|
Constituents || Native || Result | | Native Result String _ _ !

! Action Execution o
| Query

| DEX Template

Native Query Native Result

INFORMATION
SOURCE

Fig. 3.2. TSIMMIS wrapper

— the white rectangles are available in the toolkit: CONVERTER, CLS
(Client Support Library), SSL (Server Support Library), Filter Processor,
Packager, Extractor;

— The CONVERTER is the wrapper component which translates a query
expressed in the MSL language into a sequence of operations executable by
the information source. The translation is performed by using descriptions
expressed in QDTL (Query Description and Translation Language);

— QDTL description for the CONVERTER and DEX template for the Ex-
tractor must be specified;

— An architecture component, say the DRIVER, must be completely devel-
oped from scratch, for each wrapper, as it depends on the information
source.

CONVERTER and QDTL. To illustrate the CONVERTER functional-
ities and the QDTL syntax®, let us refer to a university professors and
students WHOIS information source. Let us suppose that this source allows
only very simple retrieve operations, for example, the following:

1. retrieve persons with a given last_name: >lookup -1n ’ss’
2. retrieve persons with a given last name and first_ name: >lookup -1n
’ss’ -fn ’ff’

3 A full description of the CONVERTER and of QDTL is in [504].

62 S. Bergamaschi and D. Beneventano

3. retrieve all the records of the source : >lookup

The above operations are mapped into QD TL descriptions in order to make
the CONVERTER able to decompose a MSL query into subqueries executable
by the source. A QDTL description is composed by a set of templates with
associated actions. The query templates for the three operations (no actions
are specified for the moment) are:

D1: (QT1.1) Query ::
(QT1.2) Query ::

*0 :- <0 person {< last_name $LN>}>
*0 :- <0 person {< last name $LN>

<first_name $FN>}>
(QT1.3) Query ::= "0 :- <0 person V>

Each query template is described after the : := symbol and is a parameterized
query. Identifiers preceded by the $ symbol represent the corresponding con-
stants of an input MSL query. The variables in capital letters (V) correspond
to variables of an input MSL query.

The CONVERTER includes an algorithm able to exploit each template
to describe much more queries than the ones that could be executed directly
using the template. The class of supported queries is the following:

— Directly supported queries: queries with a syntax analogous to the template;

— Logical supported queries: A query q is logically supported by a template
t if q is logically equivalent to a query q’ directly supported by t* or if it
is subsumed bya a query q’ directly supported by t;

— Indirectly supported queries: a query q is indirectly supported by a template
t if q can be decomposed in a query q’ directly supported by t and a filter
that is applied on the results of q’.

Let us consider as an example the query:
(Q6) *Q :- <Q person {<last_name ’Smith’> <role ’student’>}>
Q6 is not logically supported by any of the D1 templates, but the CON-

VERTER is able to detect that Q6 is subsumed by the query Q7 which is
directly supported:

(Q7) *Q :- <Q person {<last_name ’Smith’>}>

Q7 contains all the informations necessary to determine Q6 answer set; to
obtain Q6 answer set a filter, i.e. a new MSL query: *O :- <O person {<role
’student’>}> is generated which applied to Q7 answer set gives Q6 result.
Let us observe that, in general, for a given query q we can have more than
one query able to support it. For example query Q6, besides Q7 is supported
by the following Q8 query:

(Q8) 0" :- <0 person V>
which, in its turn, subsumes Q7.

* Two queries are logically equivalent if they give the same answer set in the same
context.

3. Integration of information from Multiple Sources 63

Remark 2. The CONVERTER should consider all the possible subsuming
supporting queries in order to select the most efficient one. The lowest sub-
suming supporting query could be a good candidate.

Actions in QDTL templates express the query in a format executable

by the source. In the described Converter actions are expressed in the C
language. Let us refer to D1 description to show some actions:

D2: (QT2.1) Query ::= *0 :- <0 person {<last_name $LN>}>
(AC2.1) {printf (lookup_query, ’lookup -ln %s’,$LN);}
(QT2.2) Query ::= *0 :- <0 person {<last_name $LN>
<first_name $FN>}>
(AC2.2) {printf (lookup_query, ’lookup -1ln %s -fn %s °’,
$LN,$FN) ; }

Extractor, DEX Templates and Filter Processor. A query result is
often expressed in a unstructured format. The FEztractor component uses
the DEX templates to analyze and structure data received from the sources.
DEX templates contain the description of the data received from a source
and informations about the fields to be extracted. After the extraction of
the needed informations from the source output, they are converted by the
Packager into a set of OEM objects. Then, this set of objects is filtered in the
Filter Processor. The filter to be applied to the set of objects is a MSL query
built by the Converter during the translation activity of the input query into
executable commands. The Filter Processor applies this query to the set of
retrieved objects and send the subset thus obtained to the Client.

3.2.3 The TSIMMIS Mediator Generator

The MedMaker system [503] is the T'SIMMIS component developed for
declaratively specifying mediators. It is targeted for integration of sources
with unstructured or semi-structured data and/or sources with changing
schemas. MedMaker provides the high level language MSL that allows the
declarative specification of mediators.

At run time, when the mediator receives a request for information, the
Mediator Specification Interpreter (MSI) collects and integrates the necessary
informations from the sources, according to the specification. The process is
analogous to expanding a view against a conventional relational database
and MSL can be seen as a view definition language that is targeted to the
OEM data model and the functionality needed for integrating heterogeneous
sources.

The Mediator Specification Language MSL: An Example. Let us in-
troduce an example to illustrate MSL. We have two input sources: a relational

database with two tables:
employee(first_name,last_name,title,report_to)

student (first_name,last_name,year)

64 S. Bergamaschi and D. Beneventano

<&%el, employee, set, {&£1,&11,%t1, &repl}>
<&fil, first_name, string, ’Joe’ >
<&l1, last_name, string, ’Chung’ >
<&til, title, string, ’professor’>
<&repi, reports_to, string, ’John Hennessy’>
<&e2, employee, set, {&£2,&12,8t2}>
<&f2, first_name, string, ?’John’ >
<&l2, last_name, string, ’Hennessy’>
<&t2, title, string, ’chairman’>
............... etc
<&s3, student, set, {&£3,&13,&y3}>
<&f3, first_name, string, ’Pierre’>
<&13, last_name, string, ’Huyn’ >
<&y3, year, integer, 3>

Table 3.1. CS objects in OEM

and a university system "WHOIS’ with informations on students and pro-
fessors. For the first source, a wrapper called *CS’ exports the informations
(some of which are shown in Table 3.1), as OEM objects; the second source
uses a wrapper called "WHOIS’ (some objects are shown in Table 3.2).

<&pl, person, set, {&n1, &d1, &rell, &eleml}>
<&nl, name, string, ’Joe Chung’>
<&di, dept, string, ‘cs’>
<&rell, relation, string, ’employee’>
<&eleml, email, string, ’chung@cs’ >
............... etc

Table 3.2. WHOIS objects in OEM

<&cpl, cs_person, set, {&mni, dmrell, &tl1, &repil, &elm1}>
<&mni, name, string, ’Joe Chung’>
<&mrelil, relation, string, ‘’employee’>
<&t1l, title, string, ’professor’>
<&repi, reports_to, string, ’John Hennesy’>
<&elemil, email, string, ’chung@cs’ >

Table 3.3. An object exported by "MIED’

Let us suppose that a mediator, called "MED?’ with objects integrating
all the informations about a person, say ’Chung’, of the department *CS?,

3. Integration of information from Multiple Sources 65

coming from the two wrappers has to be developed. Given the objects of
Table 3.1 and 3.2, MED must be able to combine them to obtain the object
of Table 3.3.

Let us introduce the rules of Table 3.4, expressed in MSL, which define
the mediator "MIED’.

(MS1) Rules:
<cs_person {<name N> <rel R> Restl Rest2}>
:— <person {<name N> <dept ’cs’> <relation R> | Restl}>

Qwhois

AND decomp(N, LN, FN)

AND <R {<first_name FN> <last_name LN> | Rest2}>Qcs
External:
decomp(string,string,string) (bound,free,free) impl by name_to_lnfn
decomp(string,string,string) (free,bound,bound) impl by 1lnfn to_name.

Table 3.4. Rules of "MIED’

Remark 3. The “creation process” of a mediator object is a pattern match-
ing process: first the object extracted by the wrapper satisfying the tail are
collected and their component are linked to the variables, then the bindings
are used to create objects expressed in the head.

With reference to the example, we want to search the objects of the sources
’CS’ and 'WHOIS’ which links to the tail expressed in rule '"MS1’ (i e.
top-level person object of "WHOIS? with sub-object name, dept="cs’ and
relation; top-level person object of ’cs’ with FN and LN obtained from the
corresponding N of whois (&el satisfies the model).

The decomp function executes the string transformations in order to ob-
tain first_name and last_name of a person. When the objects satisfying the
tail pattern have been obtained, the rule head is used to build the virtual
object which is the union of data coming from the wrappers (&cpl is the
result of the union of &pl e &el).

MSL has other querying functionalities to facilitate integration of hetero-
geneous sources: expressing only variables in the value fields it is possible to
obtain informations about the structure of an information source (e.g. after
a schema changing). MSL allows ’'wildcard’ to search objects at any nest-
ing level without specifying the whole path as it would be necessary with
conventional OO languages.

Architecture and Implementation of MSI. The Mediator Specification
Interpreter (MSI) is the component of MedMaker which process a query on
the basis of the rules expressed with MSL. It is composed of three mod-
ules: VEGAO (View Ezpander and Algebraic Optimizer); cost-based opti-
mizer; datamerge engine. VEEAO reads a query and, on the basis of the

66 S. Bergamaschi and D. Beneventano

MSL specification, discovers what objects have to be obtained from a source
and determines the conditions that the obtained objects must satisfy; gives a
result called logical datamerge program which is passed to the second module
cost-based optimizer. The optimizer develops an access plane to retrieve and
combine objects, i.e. , what requests to submit to the sources; the order of
requests submissions; how to combine the results to obtain the requested ob-
jects. The access plane is passed to the third component, datamerge engine,
which executes it and gives the results. Let us consider an example of the
MSI query processing.

Suppose that a client want to retrieve informations about ’Joe Chung’;
the query expressed in MSL is the following:

(Q1) JC :- JC :< cs_person {<name ’Joe Chung’>}> QMED

The object pattern in the tail of the query Q1 is matched against the structure
of the objects hold in MED.
View Expansion. Having as input the query Q1 and the MSL rules,

VE&AQ substitutes the query tail with the pattern of the objects in the
sources, obtaining the datamerge rule R2:

(R2) <cs_person {<name ’Joe Chung’> <rel R> Restl Rest2}>
:- <person {<name ’Joe Chung’> <dept ’cs’>
<relation R> | Rest1}>@whois
AND decomp(’Joe Chung’, LN, FN)
AND <R {<first_name FN> <last_name LN> |
Rest2 }>Qcs.

The rule obtained in this way has a head representing the query and a tail,
obtained from MST rule, indicating how to select the objects from the wrap-
pers.

Execution plan - when the MSTknows what objects have to be fetched from
the sources, the cost-based optimizer build the physical datamerge program,
that specify what query should be sent to the sources. A possible efficient
plan to process query Q1 is the following;:

1. Bindings for variables R and Rest1 are obtained from the source by
"WHOIS’ execution of the following query:

<bind for_whois {<bind for r R> < bind for Restl Resti>}>
:- <person {<name ’Joe Chung’> < dept ’cs’ >
< relation R> | Restl }>@whois

2. Bindings for variables LN and FN are obtained from one of the two decomp
functions: decomp (name_to_lnfn)

3. Each bind of R is combined with a value obtained at step 2. and the query
is submitted to CS to obtain the values of the variable Rest2.

4. the objects satisfying the head of rule R2 can be generated (e.g. &cpl
should be an object built following these steps)[503].

3. Integration of information from Multiple Sources 67

3.3 The MOMIS Project

The goal of the MOMIS (Mediator envirOnment for Multiple Information
Sources) project® [58] is to provide an integrated access to information
sources, allowing a user to pose a single query and to receive a single uni-
fied answer. The approach follows the semantic paradigm, in that conceptual
schemata of an involved source are considered, and a common data model
(ODM;:) and language (ODLjs) are adopted to describe sharable informa-
tion. ODM ;s and ODLs are defined as a subset of the corresponding ODMG-
93 [112] ODM and ODL. A Description Logics olcd (Object Language with
Complements and Descriptive cycles) constraints [60, 52, 53]) is used as a ker-
nel language and ODB-To0OLS as the supporting system [54]. An overview
of description logics formalism, inference techniques and of ODB-T0OLS are
presented in subsection 3.3.4.

With references to the classification of integration system proposed by

Hull [300], MOMIS is in the category of “read-only views”, i.e. systems whose
task is to support an integrated, read-only, view of data that resides in multi-
ple databases. The most similar projects are the GARLIC and SIMS project.
The GARLIC project [105, 566] builds up on a complex wrapper architec-
ture to describe the local sources with an OO language (GDL), and on the
definition of Garlic Complex Objects to manually unify the local sources to
define a global schema.
The SIMS project [17, 18] proposes to create a global schema definition ex-
ploiting the use of description logics (i.e. the LOOM language) for describing
information sources. The use of a global schema allows both GARLIC and
SIMS projects to support every possible user queries on the schema instead
of a predefined subset of them.

Information integration in MOMIS is based on schemata and is per-
formed through an extraction and analysis process followed by a unification
process. The extraction and analysis process is devoted to derive a Com-
mon Thesaurus of terminological relationships, based on ODL;s schemata
descriptions, and to the construction of clusters (by means of clustering tech-
niques) of ODL;s classes, describing similar information in different schemata.
The unification process builds an integrated global schema for the analyzed
sources by integrating ODLjs classes in a given cluster.

The use of the olcd description logics together with hierarchical clustering
techniques are the original contributions of the approach to enhance a semi-
automated integration process. description logics allows us to interactively
set-up the Thesaurus by deriving explicit terminological relationships from
ODL;s schemata descriptions and by inferring new relationships out of the
explicit ones. Moreover, optimization of the queries against the global schema
is possible using description logics.

5 developed in collaboration between the Universitda di Modena and the

Universitda di Milano. Papers of the MOMIS project are available at:
http://www.sparc20.dsi.unimo.it /publications.html.

68 S. Bergamaschi and D. Beneventano

Clustering techniques allow the automated identification of ODL;s classes
in different source schemata that are semantically related and thus candidate
to be unified in the global schema.

3.3.1 Overview, Architecture and ODL;s Language

In Fig. 3.3 the architecture of the MOMIS system is shown. With respect
to the literature, this can be considered as an example of powerful I® sys-
tem [98] and follows the TSIMMIS architecture [461]. Above each source
lies a wrapper responsible for translating the structure of the data source
into the common ODLj;s language. In a similar way, the wrapper performs a
translation of the query from the OQL;s language to a local request to be
executed by a single source. Above the wrapper there is a mediator, a soft-
ware module that combines, integrates, and refines ODL}s schemata received
from the wrappers. In addition, the mediator generates the OQL;s queries for
the wrappers, starting from the query request formulated with respect to the
global schema. The mediator module is obtained by coupling a “semantic ap-
proach”, based on a description logics component, i.e. ODB-T00OLS Engine,
and an extraction and analysis component, i.e., Schema Analyzer and Clas-
sifier ARTEMIS, developed at the University of Milano [108, 109], together
with a minimal ODL;s interface.

In order to easily communicate source descriptions between wrappers and
mediator engine, we introduced a data description language, called ODLys.

According to the recommendations of [98], and to the diffusion of the ob-
ject data model (and its standard ODMG-93), ODL s is very close to the ODL
language and adds features to support requirements of our intelligent infor-
mation integration system. ODLys is a source independent language used by
the mediator to manage the system in a common way (we suppose to deal with
different source types, such as relational databases, object-oriented databases,
files)®. The main extension, w.r.t. ODL, is the capability of expressing two
kind of rules: if then rules, expressing in a declarative way integrity con-
straints intra and inter sources, and mapping rules between sources. It will
be the wrapper task to translate the data description language of any par-
ticular source into ODL;s description, and to add information needed by the
mediator, such as the source name and type.

The MOMIS approach to intelligent schema integration is articulated in
the following phases:

1. Generation of a Common Thesaurus.
The objective of this step is the construction of a Common Thesaurus
of terminological relationships for schema classes belonging to different
source ODL;s schemata.
The following kinds of terminological relationships are specified: SYN

8 The syntax of the language is included in [58].

3. Integration of information from Multiple Sources 69
MEDIATOR
MOMIS | ; o .._.----=| ARTEMIS
! Global Schema |<--------""" -
! Builder AT
. | Query Manager |~ =~ opB-Toois
| e Engine
| | ODL 3 Interface|~_|
/ \ S¥Fe
onss School _Menb Uni versity_Stud
WRAPPER St udent WRAPPER ool _Member| WRAPPER Uni versi t
Attribute Attribute ML
first_nane ... narme ...
File
E w st
S1 S2 S3

Fig. 3.3. Architecture of the MOMIS I*® system

[\]

w

-~

(Synonym-of), defined between two terms t; and t;, with ¢; # t;, that
are considered synonyms, i.e., that can be interchangeably used in every
considered source, without changes in meaning; BT (Broader Terms), or
hypernymy, defined between two terms ¢; and ¢; such as ¢; has a broader,
more general meaning than ¢;; RT (Related Terms), or positive associa-
tion, defined between two terms t; and ¢; that are generally used together
in the same context.

Terminological relationships are derived in a semi-automatic way, by ana-
lyzing the structure and context of classes in the schema, by using ODB-
TooLs and the description logics techniques.

. Affinity analysis of ODLys classes.

Terminological relationships in the Thesaurus are used to evaluate the
level of affinity between classes intra and inter sources. The concept of
affinity is introduced to formalize the kind of relationships that can occur
between classes from the integration point of view. The affinity of two
classes is established by means of affinity coeflicients based on class names
and attributes [108, 109].

Clustering ODLys classes .

Classes with affinity in different sources are grouped together in clusters
using hierarchical clustering techniques. The goal is to identify the classes
that have to be integrated since describing the same or semantically re-
lated information.

Generation of the mediator global schema.

Unification of affinity clusters leads to the construction of the global
schema of the mediator. A class is defined for each cluster, which is
representative of all cluster’s classes and is characterized by the union of
their attributes. The global schema for the analyzed sources is composed

70 S. Bergamaschi and D. Beneventano

of all these new classes, derived from clusters, and is the basis for posing
queries against the sources.

Each phase of the integration process is described in detail in [58, 59].
Once the mediator global schema has been constructed, it can be exploited
by the users for posing queries. The information on the global schema is used
by the Query Manager module of MOMIS for query reformulation and for
semantic optimization using ODB-To0OLS, as discussed in [58].

3.3.2 Generation of the Mediator Global Schema

In this section we present the process which leads to the definition of the
mediator global schema, that is the mediator view of data stored in local
sources.

Running Example. First, we introduce an example used in this section to
explain the approach (see Table 3.5). We consider three different sources. The
first source is a relational database, University (S1), containing information
about the staff and the students of a given university. The second source
Computer Science (S2) contains information about people belonging to the
computer science department of the same university, and is an object-oriented
database. A third source is also available, Tax Position (S3), derived from
the registrar’s office. It consists of a file system, storing information about stu-
dent’s tax_fees. For the complete source descriptions see [58]. The generation
of Common Thesaurus, the Affinity analysis and the Clustering techniques
applied to our example give raise to the cluster tree shown in Fig. 3.4, which
classifies classes into groups at different level of affinity.

0.25

Division Department

Section

Professor

University_Student

School_Member Student

Cl,

Fig. 3.4. Affinity tree of S1, S2, and Ss3

3. Integration of information from Multiple Sources 71

University source (S1)

Research_Staff (first_name,last_name,relation,

email ,dept_code,section_code)

School_Member (first_name,last_name,faculty,year)
Department (dept_name,dept_code,budget,dept_area)
Section(section_name,section_code,length,room_code)
Room(room_code,seats_number,notes)

Computer_Science source (Sz)

CS_Person(name)
Professor:CS_Person(title,belongs_to:Division,rank)
Student :CS_Person(year,takes:set(Course),rank)
Division(description,address:Location,fund,

sector ,employee_nr)
Location(city,street,number,county)
Course(course_name, taught_by:Professor)

Tax_Position source (Ss)
University_Student(name,student_code,faculty_name,
tax_fee)

Table 3.5. Example with three source schemata

Starting from the affinity tree produced with clustering, we define, for each
cluster in the tree, a global class global_class; representative of the classes con-
tained in the cluster (i.e., a class providing the unified view of all the classes
of the cluster). The generation of the global_class; is interactive with the de-
signer. Let Cl; be a cluster in the affinity tree. First, the Global Schema
Builder component of MOMIS associates to the global_class; a set of global
attributes, corresponding to the union of the attributes of the classes be-
longing to Cl;, (the attributes with affinity are unified into a unique global
attribute in global_class;). The attribute unification process is performed au-
tomatically for what concerns the names of attributes with affinity, according
to the following rules:

— for attributes that have name affinity due to SYN relationships, only one
term is selected and assigned to the corresponding global attribute in
global_class;;

— for attributes that have name affinity due to BT and NT relationships, a
name which is a broader term for all of them is selected and assigned to
the corresponding global attribute in global_class;.

For example, the output of this attribute unification process for cluster Cl;
of Fig. 3.4, is the following set of global attributes:
Cl = (name, rank, title, dept_code, year,
takes, relation,email, student_code,
tax_fee, section code, faculty)

72 S. Bergamaschi and D. Beneventano

interface University_Person
(extent Research_Staffers, School_Members, CS_Persons
Professors, Students, University_Students
key name)
{ attribute string name
mapping rule (University.Research_Staff.first_name and
University.Research Staff.last_name),
(University.School_Member.first_name and
University.School_Member.last_name),
Computer_Science.CS_Person.name,
Computer_Science.CS_Person.last_name),
Computer_Science.Professor.name,
Computer_Science.Professor.last_name),
Computer_Science.Student.name,
Computer_Science.Student.last_name),
Tax Position.University_Student.name;
attribute string rank
mapping.rule University.Research_Staff = ‘Professor’,
University.School_Member = ‘Student’,
!

Table 3.6. Example of global class specification in ODLys

In general, additional information has to be provided by the designer to
complete the global class definition, thus a global class global_class; including
specification of attribute mappings and default values represented in form
of rules must be specified in ODL;3. An example of ODLjs specification for
the global class University Person is shown in Table 3.6. As we can see
from this figure, for each attribute, in addition to its declaration, mapping
rules are defined, specifying both information on how to map the attribute
on the corresponding attributes of the associated cluster and on possible
default /null values defined for it on cluster classes. For example, for the global
attribute name, the mapping rule specifies the attributes that have to be
considered in each class of the cluster Cl;. In this case, an and correspondence
is defined for name for the class University.Research Staff (we use dot
notation for specifying the source of a given class belonging to the cluster).
A mapping rule is defined for the global attribute rank to specify the value
to be associated with rank for the instances of University.Research Staff
and University.School Member.

The global schema of the mediator is composed of the global classes de-
fined for all the clusters of the affinity tree.

3.3.3 Implementation of MOMIS: the Global Schema Builder

In this section, a brief description of the Global Schema Builder module is
given, to outline the state of implementation of the MOMIS project. The

3. Integration of information from Multiple Sources 73

i Local schemata descriptions

,,,,,,,,,,,,, oDB-
SIM ; % 2B -Tools J

Commort Thesaurus

v

Artemis

Fig. 3.5. Global Schema Builder

Mediator Global Schema

Global Schema Builder processes the local schemata descriptions, received
from the information sources, to obtain the Mediator Global Schema, that will
be the base for the user’s queries. It is composed by the following components
(shown in Fig. 3.5):

1. SIM; (Schemata Integrator Module, first version): it reads the local
schemata descriptions, expressed in the ODL;s language, to derive the
Common Thesaurus. In particular, a set of terminological relationships
is stored in the thesaurus, by interacting with the user and by using de-
scription logics (supported by ODB-To0O0LS) to express the logical links
existing intra and inter sources;

2. Artemis: starting from the relationships of the Common Thesaurus,
Affinity Coefficients are computed between all the pairs of local classes
to be integrated, to evaluate their level of similarity. Similar classes are
grouped together using clustering techniques: every generated cluster will
correspond to a mediator global class [108]".

3.3.4 Description Logics and ODB-Too0LS

Description Logics languages - DLs®, derived from the KL-ONE model
[83, 738], have been proposed in the 80’s in the Artificial Intelligence re-
search area. DLs are fragments of first order logic: they enable concepts to be
expressed, that can be viewed as logical formulas built using unary and binary
predicates, and contain one free variable (to be filled with instances of the
concept). They bear similarities with Complex object data models (CODMs),

" This component has been developed at the University of Milano.
8 DLs are also known as Concept Languages or Terminological Logics.

74 S. Bergamaschi and D. Beneventano

recently proposed in the database area [2, 3, 4, 27, 60, 372, 373]. CODMs are
concerned with only the structural aspects of object-oriented data models
proposed for Object-Oriented Databases (OODB) [25, 112, 341] and repre-
sent well-known notions such as types, complex values, classes, objects with
identity and inheritance. DLs too are concerned with only structural aspects;
concepts roughly correspond to database classes and are organized in inher-
itance taxonomies. An additional feature of DLs with respect to CODMs is
that concepts are differentiated in primitive and defined: a primitive concept
description represents necessary conditions (thus corresponding to the usual
database class semantics); a defined concept description represents necessary
and sufficient conditions (thus corresponding to the semantics of a database
view or a query).

Remark 4. By exploiting defined concepts semantics of DLs, and, given a
type as set semantics to concept descriptions, it is possible to provide rea-
soning techniques : to compute subsumption relations among concepts (i.e.
“isa” relationships implied by concepts descriptions) and to detect incoherent
(i.e. always empty) concepts.

The research on DLs has provided reasoning techniques to determine incoher-
ence and subsumption of concepts and has assessed the complexity of these
inferences for a variety of acyclic, i.e. not allowing recursive descriptions, DLs
(see e.g.[175]).

DLs reasoning techniques are profitable for database design activities, as
will be briefly argued in the following. In fact, if we map a database schema
including only classes (no views) into one of the DLs supported by a system,
we are able to automatically detect incoherent classes. A more active role can
be performed with the introduction of views.

Remark 5. By means of DLs reasoning techniques, a view, can be automat-
ically classified (i.e., its right place in an already existing tazonomy can be
found) by determining the set of its most specific subsumer views (subsumers)
and the set of its most generalized specialization views (subsumees).

Thus, besides a passive consistency check, minimality of the schema with
respect to inheritance can easily be computed. In [61] well-known conceptual
data models have been mapped in a suitable DL and polynomial subsumption
and coherence algorithms are given.

The expressiveness of CODMs gave rise to new problems for this mapping,
as many of their features were not supported by implemented DLs. For in-
stance, most of the CODMSs introduces a clear cut distinction between values
and objects with identity and, thus, between object classes and value types.
This distinction was not present in DLs. Further, CODMs often support
additional type constructors, such as set and sequence. Mostly important,
CODMs support the representation and management of cyclic classes, i.e.,
classes which directly or indirectly refer to themselves, are allowed.

3. Integration of information from Multiple Sources 75

A description logics (odl = Object Description Logics)® overcoming the
above problems, and a theoretical framework for CODM database design
based on subsumption computation and coherence detection has been pro-
posed in [60].

Remark 6. The odl description logics represents the structural part of
OODB data models (and of the standard data model ODM of ODMGI3 [112])
and incorporates: value-types, compler values, classes, objects with identity,
and inheritance.

The main extension of odl, with respect to CODMs, is the capability
of expressing base and wvirtual classes. Base classes correspond to ordinary
classes used in database systems and virtual classes (corresponding to de-
fined concepts semantics). Cyclic classes (base and virtual) are allowed and
a greatest-fizedpoint semantics [462] has been adopted to uniquely assign an
interpretation to cyclic virtual classes.

Furthermore the interpretation of tuples in odl implies an open world
semantics for tuple types similar to the one adopted by Cardelli [103] and in
analogy with all DLs.

For instance, if we have the following assignments of values to objects:

o1+ [ar "zyz”, b: 5]
02+ (true, false)

o: :
o128 — {01,02}

Adopting an open world semantics for tuple, it follows that®

o1 € I[A[a: String]], o1 € I[A[a: String,b: Int]],
02 € I[A(BOO].)], 0128 € I[{ATc}]

Remark 7. The adoption of an open world semantics for tuple types in odl
permits an alternative formulation of the OEM capability to express semi-
structured objects (see Remark 1): objects of a class share a common minimal
structure, but can have further additional and different properties.

Remark 8. Coherence checking and subsumption computation are effective
for query optimization. A query has the semantics of a virtual class, as it
expresses o set of necessary and sufficient conditions. If we restrict the query
language to the subset of queries expressible with the schema description lan-
guage we can perform incoherence detection and subsumption computation
for queries.

® not to be confused with the homonymous ODL language of ODMG93 [112].
10 A is an object constructor operator; T ¢ is the top class containing any domain
object.

76 S. Bergamaschi and D. Beneventano

The choice of restricting the query language in order to have DDL=DML has
been made in the some works on query optimization based on acyclic DLs
such as CANDIDE [44], CLASSIC [76], BACK [401] and [95].

Remark 9. Coherence checking and subsumption computation can be clas-
sified as semantic query optimization techniques [117, 343, 614], as they per-
form a transformation of a query into a semantically equivalent one, that
minimizes query execution costs.

— if the query is detected as incoherent a null answer can immediately be
returned without accessing the database;

— if the query is coherent, it can be temporarily classified in the schema
with respect to views. As a result, either an equivalent view or the set of
immediate subsumers and immediate subsumees is returned. In the former
case, the answer set is simply the set of all objects that are instances of
the view equivalent to the query; in the latter case, the union of the sets of
instances of immediate subsumee views are included in the answer set and
only objects that are instances of the immediate subsumer view, but not
instances of the immediate subsumee views, have to be checked against the
query condition.

Usually, in database environment, query languages are more expressive
than schema description languages. This holds for Relational Databases and,
more recently, for OODB, see for example the proposed standard OQL lan-
guage [112].

Remark 10. In the context of extraction and integration of textual heteroge-
neous data sources, provided that o highly expressive OO schema description
language is available, we can adopt as query language the same language. The
choice of a simple query language (a significative restriction of OQL) has been
also recently made at the I® workshop on mediators language standards [98].

A system, called ODB-ToOLS, implementing algorithms for incoherence
detection and subsumption computation has been developed at the Diparti-
mento di Scienze dell’Ingegneria of the University of Modena'!. ODB-Too0LS
includes an extension of odl, called olcd, allowing to express quantified path
types and integrity constraints rules (IC rules). The former extension has
been introduced to deal easily and powerfully with nested structures. Paths,
which are essentially sequences of attributes, represent the central ingredient
of OODB query languages to navigate through the aggregation hierarchies
of classes and types of a schema. In particular, quantified paths to navigate
through set types are provided. The allowed quantifications are existential
and universal and they can appear more than once in the same path. IC
rules, expressed as if then rules, whose antecedent and consequent are olcd

1 ODB-TooLs is available on Internet at the following address:
(http://sparc20.dsi.unimo.it/).

3. Integration of information from Multiple Sources 77

virtual types, allow the declarative formulation of a relevant set of integrity
constraints [53, 54].

Following the key idea of semantics expansion of a type in [53] integrity
constraints can be used to optimize queries. The semantics expansion of a
query is obtained by iterating the following transformations: if a query implies
the antecedent of an integrity rule then the consequent of that rule can be
intersected with the query; subsumption computation is used to compute
logical implication. In this way new “isa” relationships can be found and it
is possible to move the query down in a schema hierarchy.

Remark 11. By using a description logics including if then integrity rules
it is possible to perform semantic query optimization with respect to usual
OODB schemata including only base classes.

ODB-TooLs is composed of two modules: ODB-DESIGNER [37] and ODB-
QOpPTIMIZER. ODB-DESIGNER is an active tool which provides an ODL
(ODMG93) standard interface and supports the design of an OODB schema
preserving coherence and minimality with respect to inheritance. It imple-
ments the theoretical framework of [60]. ODB-QOPTIMIZER performs se-
mantic optimization of OODB queries [53]; it provides an OQL (ODMG93)
standard interface.

3.3.5 On the Role of ODB-To0OLS in the MOMIS system

The key idea at the basis of the MOMIS project was that starting from a
system based on description logics as ODB-To00LS, following the “semantic
approach” and some interesting features of TSIMMIS, it is easy to develop a
powerful mediator of an I® system. In fact:

1. the standard ODM-ODMG model and ODL-ODMG language can adopted
both for sources and mediators;

2. the ODL language is extended to represent rules in analogy with MSL;

3. the ODL language is extended to represent QDTL;

4. a minimal core language which is a restriction of the OQL-ODMG lan-
guage such that it will accept queries for relational databases is adopted;

5. olcd is extended to support QDTL translation.

A mediator can be generated with the above system by introducing the fol-
lowing knowledge:

— describe the schemata of the sources to be integrated and the mediator
schema in the ODL-ODMG language;

— describe query templates in the minimal core language;

— describe the mediator rules in ODL;s.

Having ODB-To0O0LS available, the knowledge expressed in the standard lan-
guages above is automatically translated into olcd classes and virtual classes
and the the olcd incoherence detection and subsumption algorithms can be
exploited in the following way:

78 S. Bergamaschi and D. Beneventano

— to perform data integration by exploiting mediator rules;
— to execute a query by determining the most efficient one among the sup-
ported subsuming query.

Two final remarks: as observed in Remark 7, the adoption of an open world
semantics overcomes the problems of conventional OO data models above
mentioned; for sources supporting OODBMS or RDBMS, query templates
are not necessary and ODB-DESIGNER can be used as a powerful query
optimizer for OQL queries.

3.4 Discussion and Final Remarks

In this chapter, we have presented two approaches to schema integration of
heterogeneous information sources. The first one, the “structural approach”,
has been illustrated by means of the TSIMMIS system. The second one, the
“semantic approach”, has been presented by means of the MOMIS system.
It is based on a description logics component (ODB-TooLs) and a cluster
generator module (ARTEMIS) together with an ODL;s interface module. In
this way, generation of the global schema for the mediator is a semi-automated
process.

It is the authors’ opinion that the schema-less assumption of the structural
approach leads to two major drawbacks w.r.t. the semantic approach:

— inefficient retrieval of data to be integrated;
— incapability to answer to not—predefined queries.

On the contrary, the use of a schema permits to support every possible user
query on the schema instead of a predefined subset of them. For this reason,
they strongly believe that the semantic approach is more promising.

The authors are conscious that, for lack of space, the above presentation
is incomplete with respect to many topics. Among the more relevant, let us
mention:

— query decomposition and optimization;
— object fusion in mediator system:;
— integration of semi-structured data.

On the other hand, the authors think that the contents of the chapter in-
cludes topics sufficiently investigated by the research community whereas
other topics, as the last mentioned, need more research efforts.

Acknowledgements

This research has been partially funded by the MURST 40% 97 Italian
Project: 'INTERDATA".

3. Integration of information from Multiple Sources 79

We would like to thank S. Castano and S.De Capitani di Vimercati of the
Universita di Milano who developed the ARTEMIS component of the MOMIS
system, and S. Montanari and M.Vincini of the Universita di Modena who
contributed to the project and development of the Global Schema Builder.

A special thank to the students of the “Laurea in Ingegneria Informatica”

of the Universita di Modena contributing in the software development of the
MOMIS project.

