
Datalog in Time and Space, Synchronously

Matteo Interlandi, Letizia Tanca, and Sonia Bergamaschi

Università degli Studi di Modena and Reggio Emilia,
{matteo.interlandi,sonia.bergamaschi}@unimore.it

Politecnico di Milano,
tanca@elet.polimi.it

Abstract. Motivated by recent developments in the formalization of
Datalog-based languages for highly distributed systems [16], in this pa-
per we introduce the operational and declarative semantic of a version
of Datalog¬ augmented with a notion of time and space [5] in order to
formally define how computation can be performed in distributed syn-
chronous systems.

1 Introduction

Nowadays we are living the “end of the Moores low as we know it”: increasing
performance cannot be achieved just increasing hardware speed; instead, con-
current and parallel computation must be exploited. Thus, in the last few years,
new paradigms such as cloud computing, frameworks – MapReduce [15] for ex-
ample, and systems – NoSQL databases – are put at work to help programmers
in developing scalable applications which exploit distributed systems. We think
that Datalog is in a very favorable position to provide an important contribu-
tion to the development of the aforementioned technologies: (i) its intrinsically
(embarrassingly) parallel nature spontaneously lends itself as a solid basis to
develop more complex languages for modern parallel and distributed applica-
tions [12, 11]; (ii) its logical foundation provides the theoretical background that
permits to formally specify and analyze complex distributed systems [6]; (iii)
Datalog can act both as Data Definition Language (DDL) and as Data Manipu-
lation Language (DML) therefore providing a valuable tool for designing flexible
data-driven applications as the ones that are currently running on top of NoSQL
key-values stores.

We are however aware that limitations still exist in the current literature
concerning the formal models headed by the above discussed new trends. Our
aims is, starting from the research on active and deductive databases developed
during the ’90s, to revise it in order to develop new techniques that can be
employed to solve the challenges of today’s highly distributed systems. The role
of our present work is then to precisely define what a synchronous distributed
system is and provides the semantics for such kind of systems for a version
of Datalog specifically tailored for distributed programming. Indeed, in today
settings, asynchronous systems are highly preferable compared to synchronous
systems, however multiple models can be embedded over the latter, thanks to its

2 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

assumptions which are able to considerably simplify the analysis of such models.
Our work is motivated by the following three use cases:

1. Active deductive databases [30, 19] were developed in centralized settings
in which updates must be issued to a unique central database. Our aim
is to enhance this model in order to develop the semantics of synchronous
networks of partitioned and/or replicated databases.

2. With the advent of multicore architectures, programs that before were run-
ning sequentially on a single CPU, now must be able to exploit the par-
allelism provided by the new architecture. Indeed multicore machines can
be seen as synchronous shared-memory computers, and by formalizing such
systems we would then be able to characterize how to implement parallel
programs on multicore computers.

3. In the Massive Parallel (MP) model introduced in [18] computation proceeds
by steps that are performed in parallel by cluster of machines on which
the same program is running. Each step can be divided into three phases,
namely a broadcast phase, a communication phase and a computation phase.
This model actually is a particular instantiation of a synchronous system.
In addition, the MP model is stickily related with the MapReduce model
(MR): the map and the shuffle jobs are the communication steps, while the
reduce jobs are the computation steps [18]. As a consequence, by developing
a semantics for synchronous systems we would be able to seamlessly embed
in our framework the MP and the MR computation models.

Related Work In these years a renew interest in Datalog is arising, especially
pushed by new emerging trends such as declarative packet routing [21], declar-
ative overlay networks [20], network provenance [31], Map-Repuce [4], web data
management [1], and cyber physical systems [29]. Our work in particular is mo-
tivated by [16], which discusses how Datalog¬ programs are suited to express
logically distributed systems and their properties. The versions of Datalog illus-
trated in this paper, for what concern the time dimension is heavily based on
Dedalus [5] and Statelog [22], while for the space dimension we are more close to
the partitioned relations prospective of NDlog [21] then to the channels view of
Dedalus [5]. As for the operational and model-theoretic semantics of synchronous
systems, we largely take inspiration from [1, 6, 7] where relational transducers [3]
have been employed to specify the semantics of reliable asynchronous systems.
Our concept of DSR is heavily based on the Distributed Shared Memory (DSM)
[8, 25, 24].

Contributions and Organization Our main contributions are the followings:
(i) inspired by Distributed Shared Memory (DSM) we provide a prospective on
how tuples can be communicated between distributed databases by employing
Distributed Shared Relations (DSRs); (ii) we introduce a new type of Relational
Transducer [3] and Transducer network [6] specifically tailored for synchronous

Datalog in Time and Space, Synchronously 3

distributed systems and, (iii) we present the model-theoretic semantics of dis-
tributed Datalog programs for such systems by showing the equivalence betweens
the centralized and the distributed execution.

The paper is organized as follows: in Section 2 we introduce some prelimi-
naries on Datalog¬ and Datalog¬ augmented with a notion of time. In Section 3
we enhance the syntax of the language by introducing the concept of distributed
shared relations. In Section 4 we describe what a synchronous distributed sys-
tems is, and we provide the operational and declarative semantics of Datalog¬

augmented with time and space in such setting.

2 Preliminaries

Given a finite set of relation names relname, we denote with R a database
schema composed by a set of relation names R ∈ relname. In addition, we
denote with dom a countable infinite set of constants, and with var an infinite
set of variables used to range over the elements of dom. We consider dom,
var and relname as disjoined from one another. We associate to each relation
name R a function arity : R → N0. Given a relation name R and related arity
k, a free tuple over R is an ordered k-tuple composed of only constants and
variables, or, more precisely, an element of the Cartesian product (var∪dom)k.
If ū denotes a free tuple over a relation R with arity k, we use ū(i) to refer to the
i-th coordinate of ū, with i ≤ k. An atom over R is an expression in the form
R(u1, . . . , uk) where each ui is referred to as a term. We sometimes write R(ū)
to refer to an atom and ū(i) to refer to the i-th term. In the following we will use
interchangeably the terms relations and predicates. A literal is an atom – in this
case we refer to it as positive – or the negation of an atom. Now, a ground atom
is an atom containing only constant terms – i.e., ui ∈ dom. A database instance
is a finite set of facts I over the relations of R, while a relation instance IR ⊆ I
is a set of facts defined over R, with R ∈ R. The set of all constant appearing
in a given database instance I is called active domain, and is represented by
adom(I).

A Datalog¬ rule is an expression in the form:

H(w̄)← B1(ū1), . . . , Bn(ūn),¬C1(v̄1), . . . ,¬Cm(v̄m). (1)

where H, Bi, Cj are relation names and w̄, ūi, v̄j are tuples of appropriate arity.
As usual H(w̄) is referred to as the head, and B1(ū1), . . . , Cm(v̄m) as the body. If
m = 0 the rule is positive and expresses a definite clause, while if m = n = 0 the
rule is expressing a fact (clause). Note that predicates appearing in the body
of a rule can also be used in the head of the same rule to produce recursive
computation. We allow built-in predicates to appear in the bodies of rules, i.e.,
we allow relation names such as =, 6=,6, <, >, and >, each of them having
their natural meaning. To be consistent with the standard notation, we use the
infix notation and write X ≥ Y instead of ≥(X,Y). We also allow aggregate
relations in positive rule-heads in the form R(ū, Λ < w >), with Λ one of the
usual aggregate functions, w a variable from the body, and ū is a list thereof,

4 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

called the grouping variables [27]. In this paper we assume each rule to be safe,
i.e., every variable occurring in a rule-head, negative literal or built-in input
variable, appears in at least one positive literal of the rule body [13]. As a
consequence, we assume all facts to be ground because all non-ground facts are
not safe. A Datalog¬ program Π is then a set of safe rules. The intensional part
of the database schema, namely idb(R, Π), is the subset of the database schema
R containing all relations that appear in at least one rule-head in Π, while
with edb(R, Π) = R− idb(R, Π) we refer to as the extensional database. If the
program is composed by only positive rules, we refer to it as positive, while if
negation appears only in front of edb relations – i.e., Cj ⊆ edb(R, Π) – we will
denote it as semi-positive. Positive and semi-positive programs are special and
very favorable cases of Datalog¬ programs [2].

As an introductory example, we use the program depicted in Listing 1.1
where we employ an edb relation link containing tuples in the form (X,Y,D) to
specify the existence of a directed link with length D between a source node X and
a destination node Y. In addition, we employ two intensional relations path and
shortest respectively defining the transitive closure of the link relation, and
the shortest(s) among the paths existing between each pair of source-destination
nodes. To identify the shortest(s) path we make use of the shortestDistance ag-
gregate relations which stores the minimum distance for each source-destination
pair. These four relations link, path, shortest and shortestDistance will
remain the same during the entire paper.

r1: path(X,Y,D):-link(X,Y,D).

r2: path(X,Z,D):-link(X,Y,D1),path(Y,Z,D2),D=D1+D2.

r3: shortestDistance(X,Y,min<D>):-path(X,Y,D).

r4: shortest(X,Y,D):-path(X,Y,D),shortestDistance(X,Y,D).

Listing 1.1. Simple Recursive Datalog¬ Program

2.1 Adding Time

The purpose of this paper is to define a language able to model programs for
synchronous distributed systems. These systems are not static, but evolving with
time. Therefore it will be useful to enrich our schema with a notion of time in
order to logically reason on how database instances change with the progress of
time. Considering time as isomorphic to the set of natural numbers, we add a
new set of time variables tvar disjoined from var and ranging over N0. Then, a
new database schema RT is defined starting from R and incrementing the arity
of each relation R ∈ R by one. By convention, we use symbols t, t0, . . . , tn for
elements in tvar∪N0 to represent the new extra term called time-step identifier.
As a consequence, a tuple over RT has now the (reified) form R(u1, . . . , uk, t)
– where the time-step identifier occupies always the (k + 1)-th position in a
tuple – or equivalently the (suffix) form R(u1, . . . , uk)@t. What we are basically
doing by incorporating the time-step identifier term in the schema definition is
to assign to each value t in N0 an instance I[t] composed by all the facts over RT

having the time-step value t, i.e., the set of ground atoms R(u1, . . . , uk, t) with

Datalog in Time and Space, Synchronously 5

R ∈ RT a relation of arity k + 1. On the other hand, also the inverse relation
holds: for each fact we can consider the time-steps in which it is assumed to be
true. This last perspective is usually referred to as the timestamp view, while the
one previously introduced is named snapshot view, which also defines how the
notion of time can be related to the notion of state of a database: I[t] identifies
the instance at time t or in an equivalent way the t-th state of the database
[22]. Note the two different notations: we employ the bracket notation [] when
we mean a complete instance at a certain time-step, while we use the timestamp
notation @ when we want to refer to the time-step in which a certain fact is
true.

In order to characterize the set of ground atoms initially given as input to
a program, in the followings we will refer to Init as the finite initial database
instance of the schema. We consider Init as containing facts possibly spanning
multiple time-steps, or, more formally Init=

⋃
i∈N0

Init[i]. Thus by Init we refer
to initial state of the (temporal) database, where facts belonging to the initial
time-step 0, but also to the future, may be known. Thus for example:

Init′:{link(a,b)@0,link(b,c)@0}.
Init′′:{link(c,b)@0,link(a,h)@1,link(c,b)@7}.

Listing 1.2. Examples of Initial Instances

are two valid initial database instances. Note that, because at the initial sys-
tem time we are able to refer also to future time steps, the semantics we are
using is that of valid time [28]. In the following, we will use the signature
πR(I[t]) to denote an instance over the schema RT restricted to – or pro-
jected over using the algebraic prospective – the R schema. More formally,
πR(I[t]) = {R′(ū(1), . . . , ū(k))|R(ū) ∈ I[t] and R′ is equivalent to R but with
arity(R′) = arity(R)−1}. In the opposite way, with I×t we express an instance
defined over R but augmented with the time-step term t ∈ N0, or, more pre-
cisely, I×t = {R′(ū(1), . . . , ū(k), t)| R(ū) ∈ I and R′ is equivalent to R except
that arity(R′) = arity(R) + 1}.

Many versions of Datalog with a notion of time exist [30, 9]. Among all, our
version, named Datalog¬T , follows the road traced by Dedalus0 [5] and Statelog
[22]. We define Datalg¬T starting from Datalog¬ and employing the database
schema RT enhanced with two new built-in relations having N0 as domain for all
the terms: succ (with arity two) and time (with arity one). The interpretation of
succ(t, t′) is t′ = t+1, while time(t) is used to bind the evaluation step t with the
tuples that are valid at that precise time-step. In Datalog¬T , in fact, we consider
tuples to be immutable – once instantiated they cannot be retracted nor changed
– and ephemeral by default, i.e., they are valid only for the assigned time-step.
For example, the facts composing the second initial instance Init′′ defined in
Listing 1.2 are considered valid only for time-steps 0, 1 and 7 respectively, and
are not allowed to change.

We can rewrite rule (1) in the new time-aware form (using the suffix nota-
tion):

H(w̄)@t← B1(ū1)@t . . . , Bn(ūn)@t, time(t). (2)

6 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

where with Bi(ūi) we now denote positive or negated literals. Note that built-in
relations such as time and ≥, thanks to they “predefined” nature, do not need
to be postfixed by the time-step identifier. Adopting the same notation of [5]
we call this type of rules deductive, and they are used to instantaneously derive
– once fixed a time-step specified by time(t) – new facts given the information
currently available at that point in time. These newly derived facts will be valid
just for that time-step and cannot be altered.

Nevertheless, in Datalog¬T mutable tuples can be emulated using time and by
explicitly stating how tuples evolve with the progress of time. In fact, if a tuple,
let’s say R(a, b)@t is valid at time t, by employing inductive rules [5] we are able
to specify a new immutable version which will be valid at time-step t+ 1, thus
even if the initial object is not actually modified, a different version of the tuple
will exist at time t+ 1:

H(w̄)@t′ ← B1(ū1)@t, . . . , Bn(ūn)@t, time(t), succ(t, t′). (3)

where predicates related to the next state can be specified only in rules’ head.
Starting from the tuples related to a single time-step t, by employing inductive
rules we are able to build the next instance I[t+1] given the information currently
available at the present time t. From another point of view, inductive rules can
be seen as production rules used to form future instances [22].

If derivable from inductive rules, tuples from ephemeral become persistent :
once derived, for example at time-step t, they will eventually last for every t′ ≥ t.
For example a tuple in a relation R ∈ RT can be “persisted” using the following
rule:

R(ū)@t′ ← R(ū)@t, time(t), succ(t, t′). (4)

Persistent relations can only grow because in accordance with rule (4), once
added a tuple exists forever. The permanency state of a tuple can be “broken”
by defining, for example, an idb relation del R and by modifying the previous
rule as follows:

R(ū)@t′ ← R(ū)@t,¬del R(ū)@t, time(t), succ(t, t′). (5)

Rule (5) basically is stating that at a given time t, a tuple will continue to be
valid also at the successive time-step t+ 1 if it is true at time t and at the same
point in time an explicit deletion for the same tuple does not exist. Since we
want to avoid the specification of edb relations in the head of inductive rules
to make them persistent, for each extensional relation R ∈ edb(RT , Π), a new
predicate R idb is added to the RT schema. In addition the following rule is
added:

R idb@t← R@t, time(t). (6)

In this way, for each extensional predicate R one intensional relation exists that
contains at least the tuples originally stored in R. We can now operate directly
on such idb relations by means of inductive rules – R idb relations are allowed to
appear has heads only in inductive rules, except for rules of type (6) obviously –
instead of modifying the extensional instance. The just introduced rules are the

Datalog in Time and Space, Synchronously 7

only ones permitted to involve extensional predicates. This property of the edb
is called guarded edb [5].

Some syntactic sugar is adopted in order to better manipulate rules and
relations: all the time-step suffixes are omitted together with the succ and time

relations – thus deductive rules appear as usual Datalog¬ rules – while a next

suffix is introduced in the head relations of inductive rules.

deductive : H(w̄)← B1(ū1), . . . , Bn(ūn). (7)

inductive : H(w̄)@next← B1(ū1), . . . , Bn(ūn). (8)

In Listing 1.3 the program of the previous section is rewritten introducing the
new formalism.

r1: link_idb(X,Y,D)@next:-link_idb(X,Y,D).

r2: link_idb(X,Y,D):-link(X,Y,D)

r3: path(X,Y,D):-link_idb(X,Y,D).

r4: path(X,Z,D):-link_idb(X,Y,D1),path(Y,Z,D2),D=D1+D2.

r5: shortestDistance(X,Y,min<D>):-path(X,Y,D).

r6: shortest(X,Y,D):-path(X,Y,D), shortestDistance(X,Y,D).

Listing 1.3. Inductive and Deductive Rules

From here on, for the sake of conciseness we omit to write the rules of type (6)
transmitting tuples from edb to idb relations (such as rule r2), and, instead, we
employ R to express directly R idb.

2.2 Model-Theoretic Semantics

In this section, to derive the proper semantics for Datalog¬T , we take inspiration
from the model-theoretic semantics of Statelog [22] . Given a program Π and a
finite input instance πR(Init), we define Σ = Π∪πR(Init), and we construct the
Herbrand universe UΣ in the usual way, by creating a set encompassing all the
ground terms that can be constructed starting from constant symbols appearing
in the clauses constituting the set Σ. Then we define the Herbrand base BΣ as
the set of all ground atoms which can be formed by using predicate symbols
from Σ with constant terms from UΣ as arguments. A Datalog¬ interpretation
IΣ is then a subset of BΣ × N0, i.e., a (potentially infinite if a final state does
not exist) sequence IΣ = (IΣ [0], . . . , IΣ [n]) where each IΣ [i] with i ∈ N0 is an
Herbrand interpretation – that is, a subset of the Herbrand base BΣ – at the
i-th time-step. With IΣ [∗] we name the database final state if it exists. Now,
given a variable assignment function v which maps each variable to an element
in dom, and an interpretation IΣ , the definition of satisfiability for a deductive

8 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

clause with no aggregate relations in Π ∪ Init is:

(IΣ , v) |= H(w̄)@t← B1(ū1)@t, . . . , Bn(ūn)@t, time(t).

iff whenever

(IΣ [t], v) |= B1(ū1), . . . , (IΣ [t], v) |= Bn(ūn), (IΣ [t], v) |= time(t)

then

(IΣ [t], v) |= H(w̄)

The same applies for inductive rules. For what concerns instead aggregate pred-
icates, they constitute the head of aggregation rules having the following form
(here we show a deductive aggregation rule but the same applies for inductive
aggregation rules):

R(ū, Λ < w >)@t← B1(ū1)@t, . . . , Bn(ūn)@t, time(t). (9)

where Λ is an aggregate function, ū is a list of variables from the body, and w
is also a body variable possibly belonging to the list ū. Now, if we denote with
ū′ a ground assignment for ū, and with W the finite multi-set containing all the
existing ground assignments of w, which, with ū′, satisfy the body of the rule,
we have that R(ū′, a) is true, where a = Λ < W >. That is, a is the result of the
application of Λ to the multi-set W [10, 17]. Our canonical model MΣ is then
selected from the set of possible models, i.e., interpretations satisfying all the
clauses r ∈ Π ∪ Init. We will usually denote with model snapshot MΣ [t] the
model at time-step t, while withMΣ we name the (potentially infinite if a final
state does not exist) sequence of model snapshots.

If program Π is positive its semantics is a straightforward extension of clas-
sical Datalog programs semantics: the sequence of least Herbrand models where
Init is true – that is, ∀t ∈ N0, MΣ [t] |= Init[t] – and satisfying Π. It turns out
that also for semi-positive programs the semantics coincides with the sequence
of unique minimal models satisfying Init and Π. This is because, by employing
the Closed World Assumption (CWA) w.r.t. the active domain, given an edb re-
lation R, which, by its nature, has a stable content, the negative literal ¬R(ū) is
satisfied if the ground tuple ū is in the active domain and ū /∈ R [2]. If, instead,
we allow negated idb atoms into programs, we consider the stratified semantics.
This semantics is too restrictive for Datalog¬T programs: in fact, it turns out
that certain types of negative dependency cycles can be allowed, i.e., negative
cycles that are not within one time-step, but “across” different time-steps. The
temporally-stratified semantics [5] is therefore introduced.

Definition 1. A program Π is called temporally stratifiable if negative depen-
dency cycles among deductive rules do not exist.

It has been shown [5] – an analogous statement has been proved for Statelog
[22] and Datalog XY-programs [30] – that given a rectified program Π – i.e., a
program that does not contain any constant – Π is temporally stratifiable if and
only if it is locally stratifiable. Since it is well-known that every locally stratified
program has a unique perfect model [26], we can assume that every temporally

Datalog in Time and Space, Synchronously 9

stratifiable program has a unique perfect model MΣ , and this is the intended
canonical model.

Definition 2. A temporally stratifiable Datalog¬T program Π has a unique per-
fect model MΣ.

Even though local stratification is in general undecidable [14], temporal stratifi-
cation is decidable and can be easily computed similarly as for normal stratifica-
tion in Datalog¬ [22]. Thanks to the program stratification, we induce a partial
order over rules: first deductive rules are evaluated according to the stratification
until a stable perfect modelMΣded

[t] is reached for the current time-step t. Then
the rules definingMΣ [t+1] will be executed. The operational semantics ofMΣ

follows just this approach. To note thatMΣ does not always terminate, i.e., the
final state MΣ [∗] might not exist if the program encodes a periodic behavior,
as shown for the example in Listing 1.4.

r1: r(Y,X)@next:-r(X,Y).

r2: r(a,b)@0

Listing 1.4. Example of a non terminating program

However, even if not terminating, MΣ [t] exists for all t > 0 and MΣ can be
finitely represented due to its periodic behavior [22].

2.3 Operational Semantics

The operational semantics follows the usual bottom-up evaluation algorithm,
although the semi-naive algorithm has been slightly modified in order to address
the two different behaviors of deductive and inductive rules. To this purpose
each computation round is divided into two steps: a deductive step where rules
have to be executed in the order induced by the stratification; and an inductive
step where facts are transferred from the t-th to the (t+ 1)-th state and where
rules can be evaluated in any order because they do not depends on each other.
We start the description of our algorithm by partitioning a program Π into the
two sets of deductive and inductive rules, respectively Πded and Πind. Then a
pre-processing step orders the deductive rules following the dependency graph
stratification. After this pre-processing step, the modelMΣ is computed by the
Algorithm 1.
The function deduction evaluates the stratified program Πded by employing the
Algorithm 2 [30], where TΠded

is the immediate consequence operator for program
Πded and ∆pi is the set containing the newly derived facts at round i. To note
that MΣded

[t] is defined over RT while MΣ [t] is defined over R.

3 Distributed Logic Programming

The language introduced so far allows us to logically model an evolving sys-
tem thanks to the notion of time. But this formalism is not able to describe
how computation can be distributed and performed simultaneously on multiple

10 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

Algorithm 1 Bottom-up evaluation

Input: a program Π; the initial database instance Init
Output: the model MΣ

t := 0;
MΣ [0]← πR(Init[0]) ∪ time(0);
repeat
MΣded [t]← deduction(Πded)(MΣ [t]× t);
MΣ [t+ 1]← induction(Πind)(MΣded [t]) ∪ Init[t+ 1] ∪ time(t+ 1);
t := t + 1;

untilMΣ [t+ 1] =MΣ [t]
return {MΣ [0], . . . ,MΣ [t]}

Algorithm 2 Function deduction

Input: a stratified deductive program Πded = Π0
ded∪̇...∪̇Πk

ded;
MΣ [t]

Output: the perfect model MΣded [t]
p0 ←MΣ [t];
∆p0 ← T 0

Πded
(p0);

p1 ← ∆p0 ∪ p0;
for i := 1 to k do

repeat
∆pi ← T iΠded

(pi) / pi;

pi−1 ← pi;
∆pi−1 ← ∆pi;
pi ← pi−1 ∪∆pi−1;

until ∆pi−1 = 0
end for
return pi

processing units. In order to reach this goal, in this section we are going to in-
troduce the notion of distributed shared relation (DSR), and we will describe
how this high-level abstraction can be employed to obtain a logical language for
distributed systems. The discussion that follows is based on two assumptions:
the network topology is fully connected and the system is synchronous and re-
liable. While the first assumption is made in order to simplify the treatment
and indeed can be easily relaxed, for example by assuming a network layer or a
special purpose program computing routing paths – as the example programs of
previous sections – the second directly affects the syntax and semantics of the
language.

3.1 Preliminary

In the following we define a distributed system to be composed by a non-empty
finite set of nodes identifiers L = {l1, l2, . . . , ln}. Each node identifier li has value
in the domain dom, that we consider to be the same for every node – but, for
simplicity here we assume a node li to be identified by its apex i. Thus, in the

Datalog in Time and Space, Synchronously 11

following we use the set L = {1, . . . , n} as the set of node identifiers, where n
is the total number of nodes in the system. We assume each node i to maintain
its own database schema Ri

T . Therefore starting from the relational schema
RT =

⋃
i∈L Ri

T we define the new schema RST obtained by adding a new set of
(distributed) shared relations (DSR) defining the sdb schema. As usual, given a
programΠ, sdb(RST , Π) indicates the DSR relations inΠ. The database schema
RS is obtained in a similar way. We assume sdb relations to be completely
disjoined from both edb and idb relations. Shared relations are the means by
which nodes are able to interact among themselves. As the name highlights, such
relations are shared among multiples nodes simultaneously, so a mechanism for
deciding which node is responsible for which tuple must be developed. Given a
relation S ∈ sdb, an atom over S has the form S(->l, u1, . . . , uk)@t, where the
term l ∈ dom∪var is called location specifier [21] and is used to identify which
node has the exclusive access privileges on that particular k-tuple, or, in other
words, which node is responsible for that portion of data. We assume the location
specifier to be always the first term of a shared relation. Moreover we assume
RST to contain two new unary built-in relations, namely id, and all. The first
stores the local node id, while the second maintains all the nodes belonging to
the network, i.e., L.

3.2 Syntax

Deductive and inductive rules (respectively eq.s (2) and (3)) can be rewritten in
the following form in order to incorporate shared relations:

H(w̄)@t← B1(ū1)@t, . . . , Bn(ūn)@t, (¬)S1(->l1, v̄1)@t, . . . ,

(¬)Sm(->lm, v̄m)@t, time(t). (10)

H(w̄)@t← B1(ū1)@t, . . . , Bn(ūn)@t, (¬)S1(->l1, v̄1)@t, . . . ,

(¬)Sm(->lm, v̄m)@t, time(t), succ(t, t′). (11)

where we allow Bi to range both over edb ∪ idb literals, and Sj to range over
sdb relations, while H can space over sdb(RST , Π) ∪ idb(RST , Π), and hence if
H ∈ sdb(RST , Π) we assume the tuple w̄ to contain also the location specifier
term. More precisely, the location specifier term will be the local node id if the
rule is of type (10), while can be any identifier in L if of type (11). a deductive
rule is local if m = 0, while an inductive rule is local if m = 0 and l is bound
to the local node id. Non-local rules are labeled as distributed. Among all the
distributed inductive rules, some rules are of special interest because they are
used to explicitly state when a tuple access privileges must be transferred from
one single node to another:

Definition 3. An explicit communication rule is a distributed inductive rule in
the following form:

H(->l′, w̄)@t′ ← B1(ū1)@t, . . . , Bn(ūn)@t, (¬)S1(->l, v̄1)@t, . . . ,

(¬)Sm(->l, v̄m)@t, time(t), succ(t, t′), (id(l)). (12)

12 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

where H ∈ sdb and the location specifier term of the head l′ differs from all the
location specifier l (if they exist) appearing in the body’s sdb relations. In case
sdb relations appear in the body, the location specifier term must be bound to the
local node id l.

Explicit communication rules are used to move local facts from one node to
another. Therefore the body of such rules must contain only local atoms, i.e.,
atoms over edb or idb relations (thus if only these type of relations exist in
the body, id is not necessary), or atoms over sdb relations where the location
specifier term is bound to be the local node (in this case id is needed in oder to
bound the location specifier terms).

Deductive, inductive and (inductive) explicit communications rules have the
following syntactic-sugared form:

deductive : H(w̄)← B1(ū1), . . . , Bn(ūn),

S1(->l1, v̄1), . . . , Sm(->lm, v̄m). (13)

inductive : H(w̄)@next← B1(ū1), . . . , Bn(ūn),

S1(->l1, v̄1), . . . , Sm(->lm, v̄m). (14)

explicit communication : H ′(->l′, w̄)@next← B1(ū1), . . . , Bn(ūn),

S1(->l, v̄1), . . . , Sm(->l, v̄m). (15)

where Bi(ūi) and Sj(v̄j) are literals, Sj ∈ sdb, H ∈ idb ∪ sdb and H ′ ∈ sdb.
We name this language Datalog¬ST . It’s interesting to note that the new version
of inductive rules still resemble the old version described in previous sections.
But, as we will see in the next section, we can assert that also semantically are
almost equivalent. In fact, if the previous versions permits to transfer tuples
among time-steps, this new version permits to transfer tuples among time-steps
and nodes, which, thanks to the synchronous communication model, we are able
to affirm that takes exactly one time-step.

Continuing with the usual example, we can now actually program a dis-
tributed routing protocol. In order to describe the example of Listing 1.5 we can
imagine a real network configuration where each node has the program locally
installed and where each link relation reflects the actual state of the connec-
tion between nodes. For example, we will have the fact link(a,b) in node a’s
instance if a communication link actually exists between nodes a and b.

r1: link(X,Y)@next:-link(X,Y).

r2: path(->X,Y)@next:-path(->X,Y).

r3: path(->X,Y):-link(X,Y).

r4: path(->X,Z)@next:-path(->X,Y),path(->Y,Z).

Listing 1.5. Distributed Program

In this new version computation is performed simultaneously on multiple dis-
tributed nodes. Communication among nodes is achieved through rule r4 which
specifies that node a knows that a path from node a to a node c exists if it

Datalog in Time and Space, Synchronously 13

knows that there is a path from a to another node b and this last node knows
that a path from b to c exists. The body of rule r4 contains relations stored at
different locations, therefore implicitly assuming tuples to be exchanged among
nodes. Now, if this program is run locally, for example on a shared memory
multicore system, the path relation can actually be implemented using the local
shared memory, therefore each path fact is also available to other nodes once
derived. If instead the program is run on multiple distributed machines, rule
r4 will be never evaluated because no tuple belonging to other nodes is stored
locally. This because a rule, to be satisfied, needs to have all tuples locally stored
in order to correctly compute the joins among relations. To solve this, we can use
the rule localization rewrite algorithm first introduced in [21], in order to make
communication explicit (as specified in Definition 3), where all joins in the body
are computed among locally stored relations. Rule r4 can hence be rewritten in
the two rules of Listing 1.6.

r4 a: path_r(->Y,X)@next:-path(->X,Y).

r4 b: path(->X,Z):@next-path_r(->Y,X),path(->Y,Z).

Listing 1.6. Rewriting of Rule r4 of Listing 1.5

In this way, each path existing at node X is explicitly sent to the neighbor Y ,
and then the transitive closure can be computed at node Y because it locally
has stored all the necessary tuples. This example shows the power of employing
DSRs as communication means. The programmer can specify a program that
is completely independent of any physical assumption and the behavior of the
program can be shaped by the compiler using rewriting algorithms that are
appropriate for the given physical context.

4 Semantics for Synchronous Systems

Before introducing the semantics of Datalog¬ST , we have to introduce some con-
cept defining what a distributed computation is. Then employing transducer net-
works [6, 7] we will show how computation is actually performed in synchronous
setting with reliable communication and fully connected topology. We will then
describe the model-theoretic semantics of Datalog¬ST programs by showing that
is equivalent to the semantics of a Datalog¬T -centralized version of the program.
But first we have to introduce the notion of relational transducer.

4.1 Datalog¬
ST -Relational Transducer

Given a Datalog¬ST program Π defined over a relational schema RST , we de-
fine database, memory, and distributed shared relation schemas, respectively, as
Rdb = edb(RT , Π), Rmem = idb(RT , Π), and Rdsr = sdb(RTS , Π). A trans-
ducer schema R is a tuple (Rdb, Rmem, Rdsr, Rtime, Rsys) where Rtime con-
tains just the unary relation time, and the system schema Rsys contains the
two unary relations id, and all. A transducer state for R is a database instance
T over Rdb∪ Rmem∪ Rdsr∪ Rtime and a Datalog¬ST -relational transducer is a

14 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

program T defined over R. Finally, a transducer configuration, is a tuple (L,α)
where L is the set of nodes defining the relation all, and α is the location
identifier of the node.

Initially a relational transducer T is assumed as loaded with the initial in-
stance Tdb = Init and time contains the tuple (0), In addition, we assume to
have a (possibly infinite) input tape containing an ordered sequence of consec-
utive natural numbers starting from 1. This sequence will be used as input for
a relational transducer in order to provide the clock driving the computation.
Why we provide time-steps in this way will be more clear in Section 4.4, where
we define synchronous transducer networks.

Given as input a set of input tuples Tin defined over Rdsr, together with a
configuration and the next time value taken from the input tape, the relational
transducer will transit to the next state and output a set of output tuples T ′

out

defined over Rdsr. More formally: similarly to what we did in Section 2.2, we
define Υ = T ∪ πR(Init), and UΥ , BΥ to be respectively the Herbrand universe
and Herbrand base constructed starting from the set of clauses in Υ . Then, if we
denote with Tded and Tind respectively the set of local deductive and inductive
rules in T , we use the symbolsMΥded

andMΥind
to identify the“instantaneous”

models of Tded, and Tind – i.e., subsets of BΥ . In addition, with Tcom we identify
the set of rules defining the remaining distributed rules in the form of (13)
and (14) – if they are adequate for the given physical context because in the
opposite case they will be rewritten in explicit communication rules using the
rule localization algorithm – plus the rules in form of (15). To simplify the
description, however, we assume w.l.o.g. that Tcom is composed only by rules in
the form of (15).

Now, a local transition is a 5-tuple (T, t, (L, i), Tin,T
′, T ′

out), also denoted as

T, Tin
t,(L,i)
=⇒ T′, T ′

out, where t ∈ N is taken from the input tape and Tin, T ′
out

are instances of Rdsr. T′, T ′
out are transducer states such that:

– T ′
db = Tdb

– T ′
time = time(t)

– Tsys := id(i) ∪ {all(j)|j ∈ L}
– MΥded

= deduction(Tded)(Tdb[t]∪ Tmem[t] ∪ Tin[t] ∪ Tsys)
– MΥind

= induction(Tind)(MΥded
)

– MΥcom
= induction(Tcom)(MΥded

)
– T ′

dsr =Mi
Υcom

i.e., dsr tuples referred to the local node i, where id(i) ∈ Tid.
– T ′

out =MΠcom
/Mi

Υcom

– T ′
mem =MΥind

where deduction and induction are the same functions described in Section 2.3.

To note that transitions are deterministic, i.e., if T, Tin
t,(L,i)
=⇒ T′, T ′

out and T,

Tin
t,(L,i)
=⇒ T′′, T ′′

out, then T′ = T′′ and T ′
out = T ′′

out [6].

4.2 Distributed Computation

At any point in time each node is in some particular local state incapsulating
all the information of interest the node possesses. For convenience, we define the

Datalog in Time and Space, Synchronously 15

local state si of a node i ∈ L as the pair (Ii, n) where Ii = πRT
(Ti[n]) with Ti[n]

a transducer state for node i at time-step n. Note that a local state is completely
determined by the transducer state Ti, however, here we use the notation (Ii, n)
just to make explicit the fact that each state embeds internally a notion of time.
We define the global state g of a distributed system as a tuple (se, s1, ..., sn) where
si is node i’s state, while se is the environment local state. We can consider the
environment as a “special” node storing all the information external to each
node. In the following we will consider Ie to contain the sequence of facts that
are in transit among nodes and not yet received. We define how global states may
change over time through the notion of run, which binds time values to global
states. Again, if we assume time values to be isomorphic to the set of natural
numbers, we can define the function ρ : N→ G where G = {Se × S1 × ...× Sn},
Si is the set of possible local states for node i ∈ L , and Se is the set of possible
states for the environment.

If ρ(t) = (se, s1, ..., sn) is the global state at time t, we define ρe(t) = se

and ρi(t) = si, for i ∈ L. We denote with init the initial state ρ(0), with
ρ(0)i = si = (Ii, 0) and where Ii = Initi[0] ∪ time(0) – i.e., the partition of
Init containing the portion of tuples for node i at time 0. We want to note here
that the time t and the notion of time-step n incapsulated in programs are two
different entities. In fact, while the first one is an external time used to reason
about the evolution of global states, the second – i.e., the one used to drive the
computation of the transducer – is definitely an internal (relative) perspective
that each node has about the passing of time. For instance the node i’s local
state at time t will have the form ρ(t)i = si where si = (Ii, n) and possibly
t 6= n. In the following section, however, we will see how these two notions can
be tied together in order to define what a synchronous computation is.

A system may have many possible runs, indicating all the possible ways the
global state can evolve. In order to capture this, we define a system S as a set of
runs. Using this definition we are able to deal with a system not as a collection
of interacting nodes but, instead, directly modeling its behavior by a program
specification. We think that this approach is particularly important to the aim
of maintaing a high level of declarativity in our description.

4.3 Synchronous Systems

For a system to be synchronous it must satisfy the following properties:

S1 A global clock is defined and is accessible by every node
S2 The relative difference between the time-step of any two nodes is bounded
S3 Updates to remote sdb relations arrive at destination at most after a certain

bounded physical time ∆

A synchronous system Ssync is therefore a set of runs fulfilling the above con-
ditions. The first property can be expressed in our framework by linking the
time-step identifier of each node with the external time. Thus, by definition,
every local state ρi(t) = (Ii, n) will have now t = n. In this configuration, the

16 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

second property is implemented by assuming that programs proceed in rounds,
and that each round, operationally speaking, lasts enough to permit each node
computation to reach the fix-point. In the following, w.l.o.g. we use the round
number as external time (and therefore as time-step identifier).

In order to express the third property, we assume ∆ to be amply lower than
the amount of (physical) time spent between the end of one round and the start
of the consecutive one. Indeed this condition is satisfied by the communication
rule syntax – a fact inferred from a communication rule is true in the subsequent
time-step – and in the next section we will show how this is also satisfied by its
semantics.

4.4 Synchronous Transducer Networks

We have already defined how local states evolve by defining what a relational
transdcer is. Now that we have defined what a synchronous system is, it remains
to specify how properties S1 - S3 can be enforced during the evolution of global
states. To accomplish this, we employ a synchronous transducer network [6, 7].
A synchronous Datalog¬ST -transducer network is a tuple(L, γ, T , T e) where γ is
a function mapping each element i ∈ L to a transducer state Ti, whose config-
uration is (L, i). We then assume the environment to be a “special” relational
transducer. In particular, we consider the transducer defining the environment
T e as having an empty program, and the schema composed only by dsr rela-
tions with Re

dsr =
⋃
i∈L Ri

dsr. As hinted before, we consider the environment as
registering the sdb facts floating in the network and not yet received. As can be
noticed, in our definition we assume each node i ∈ L to have the same trans-
ducer T , while the only thing that we allow to change from node to node is
its instance. Then, a state N of a transducer network (L, γ, T , T e) is a tuple
(Te,T1, . . . ,Tn) where for each i ∈ L the i-th element is the related relational
transducer state γ(i) = Ti such that Tdb = Initi.

Let a transducer network initial state be a state where each time relation
contains the value 0, and except Rdb, id, and all, all the remaining relations

are empty. A global transition, is a 3-tuple (N, t,N′) also denoted as N
t

=⇒ N′

where N and N′ are transducer network states, and t ∈ N is denoting the input
from the time tape specifying what will be the next round. A global transition
is defined such that:

– Tin = Te

– ∀i ∈ L, ∃Ti s. t. γ(i) = Ti, (Ti, T iin,
t,(L,i)
=⇒ T′i, T ′i

out) is a local transition for
node i, where T iin denotes the set of facts in Tin for node i ∈ L

– T′e =
⋃
i∈L T

′i
out

Informally, during a global transition all the transducers composing the network
instantaneously make a local transition taking as input the associated sdb tuples
output of the t − 1 round. In addition we assume that one global transition, in
order to satisfy property S3, can start only after that a certain amount ∆ of
physical time has elapsed after the end of the previous transition. Indeed, since

Datalog in Time and Space, Synchronously 17

a global transition is composed by n local transitions all fired instantaneously
and the communication is reliable, also global transitions are deterministic. If
we consider a global state at round t to be defined as ρ(t) = (se, s1, . . . , sn)
with si = (Ii, t) and Ii = πRT

(Ti[t]) where Ti[t] denotes the local Datalog¬ST -
transducer state for node i ∈ L∪ e at round t, the definition of global transition
specifies how global states evolve in synchronous settings because it satisfies
conditions S1 - S3. Given a Datalog¬ST program and an initial instance Init, its
operational semantics in synchronous settings is completely determined by the
synchronous system Ssync defining its evolution.

4.5 Model-Theoretic Semantics of Synchronous Transducers
Networks

Starting from a synchronous transducer network (L, γ, e), we can develop a
restricted form of Datalog¬ST -relational transducer, namely Datalog¬T -relational
transducer, which is able to simulate the behavior of such network in central-
ized settings. Then, after having developed the model-theoretic semantics of this
restricted form of synchronous transducer networks, we will show that the declar-
ative semantics of a transducer network is indeed the model-theoretic semantics
of its centralized version.

Given a transducer network (L, γ, T , T e) with schema R = (Rdb, Rmem,
Rdsr, Rtime, Rsys) and program T , its centralized version is a Datalog¬T -relational
transducer defined as follows (where we use the apex c to denote the centralized
variant):

– Rc = (Rdb, Rc
mem, Rtime) where Rc

mem = Rmem ∪ πRT
(Rdsr)

– T c is a Datalog¬T -relational transducer, i.e., the restricted version of T rang-
ing over Rc

Informally, the centralized version of a synchronous transducer network is com-
posed by the same program T defining the network – remember that the schema
and the program of a transducer network are the same for each node i ∈ L – but
where each sdb relation is now restricted over RT – i.e., all the location speci-
fiers have been dropped – and therefore all distributed rules became normal local
rules. Due to this restriction, the environment and the system relations are no
more necessary. A transition for the Datalog¬T -relational transducer T c is simply
the tuple (T, t,T′) where each component is as follows:

– T ′
db = Tdb

– T ′
time = time(t)

– MΥ c
ded

= deduction(Tded)(Tdb[n] ∪ Tmem[n] ∪ time(n)) where n = t− 1
– MΥ c = induction(Tind)(MΥded

)
– T ′

mem =MΥ c

where in particular Υ c = T ∪ πR(Init). Also in this case transitions are indeed
deterministic, and, in addition, the system describing the relational transducer
T c is composed by one and only one run.

18 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

Lemma 1. Given a Datalog¬T -relational transducer and a finite input instance,
the system describing the evolution of such transducer, if exists, is composed by
one and only run.

Proof. Assuming that a system describing the Datalog¬T -relational transducer
exists, then the system is composed by at least one run by definition. This
run is unique because transitions are deterministic. As a consequence, given a
transducer and a finite initial instance, one single run can be used to specify how
the states of the transducer evolve.

Remember that T c is a Datalog¬T program, that we can identify with Πc. Its
canonical model MΣc is the (possible infinite) sequence of model snapshots
MΣc [0], . . . ,MΣc [n] defined over Σc = Πc ∪ πR(Init) and satisfying all the
clauses in Πc∪ Init. Do note that Σc = Υ c, however we employ this notation to
make a distinction between the model computed as in Section 2.3 and the model
computed by the associated relational transducer. The following theorem states
that the two models are indeed identical.

Theorem 1 Given a Datalog¬T program Πc and a finite input instance Init, its
model-theoretic semantics is equivalent to the system S describing the evolution
of the Datalog¬T -relational transducer defining Πc.

Proof. We denote with T c the Datalog¬T -relational transducer describing the
program Πc. By Lemma 1 we know that given an input instance the system S
expressing the evolution of T c consists of a unique run. We use the symbol ρc

to identify this single run. To prove the theorem we have to show that the se-
quence of states defined by the unique run {ρc(0), . . . , ρc(n)} is equivalent to the
sequence of snapshot models composing MΣc , i.e., {MΣc [0], . . . ,MΣc [n]}. We
are going to proceed by induction: in the base step trivially we have that ρc(0) =
Init[0] ∪ time(0) = MΣc [0]. For the inductive step, we assume that ρc(n) =
MΣc [n] and we need to prove that the same happens for time n+1. By definition
ρc(n + 1) = Init[n + 1] ∪ time(n + 1) ∪ MΥ c [n], where MΥ c [n] = MΥ c

ind
[n].

Now, ifMΥ c
ded

[n] = deduction(T cded)(Tdb[n] ∪ Tmem[n] ∪ time(n)), then ρc(n) =
Tdb[n] ∪ Tmem ∪ time(n) and MΥ c [n] = induction(T cind)(MΥ c

ded
[n]). Analo-

gously, from Section 2.3 we have that MΣc [n + 1] = Init[n + 1] ∪ time(n + 1)
∪ MΣc

ind
[n], where MΣc

ind
[n] = induction(Πc

ind)(MΣc
ded

[n]) and MΣc
ded

[n] =
deduction(Πc

ded)(MΣc [n]). Since T cded = Πc
ded by definition, T cind = Πc

ind and
ρc(n) =MΣc [n] applying the inductive step computation, we have that ρc(n+
1) =MΣc [n+1]. It follows that ∀n ∈ N, {ρc(0), . . . , ρc(n)} = {MΣc [0], . . . ,MΣc [n]}.

We are now able to derive the model-theoretic semantics of synchronous
transducer networks.

Theorem 2 Let Init be a finite initial database instance, (L, γ, T , T e) a trans-
ducer network, andMΣc the perfect model of the centralized version of (L, γ, T , T e).
Then:

MΣc = (
⋃
i∈L

ρi(0), . . . ,
⋃
i∈L

ρi(n)) (16)

Datalog in Time and Space, Synchronously 19

Proof. One single run exists in the system Ssync describing the network (L, γ, e)
because global transitions are deterministic. Let’s call this run ρ. We have to
show that (

⋃
i∈L ρ

i(0), . . . ,
⋃
i∈L ρ

i(n)) = (ρc(0), . . . , ρc(n)) with ρc the unique
run defining the centralized version of the network, i.e., T c. This is enough to
prove the theorem since from Theorem 1 we already know that (ρc(0), . . . , ρc(n)) =
(MΣc [0], . . . ,MΣc [n]). Let’s proceed by induction. For the base step we have
that

⋃
i∈L ρ

i(0) = Init∪ time(0) = ρc(0). For the inductive step, instead, we
assume

⋃
i∈L ρ

i(n) = ρc(n) and we have to demonstrate that
⋃
i∈L ρ

i(n + 1) =
ρc(n+1). From section the proof of Theorem 1 we already know that ρc(n+1) =
Init[n+ 1] ∪ time(n+ 1) ∪ MΥ [n], with MΥded

[n] = deduction(Tded)(Tdb[n] ∪
Tmem[n] ∪ time(n)), ρc(n) = Tdb[n] ∪ Tmem ∪ time(n) andMΥ [n] = induction(Tind)
(MΥded

[n]). For the other side of the equivalence we have that
⋃
i∈L ρ

i(n+ 1) =

(
⋃
i∈L Initi[n + 1]) ∪ time(n + 1) ∪ (

⋃
i∈LMi

Υ [n]). Again, (
⋃
i∈LMi

Υ [n]) =⋃
i∈L induction (Tind)(Mi

Υded
[n]), with, as usual,Mi

Υded
[n] = deduction(Tded)(ρi(n)).

Then, since we have that
⋃
i∈L Initi[n+1] = Init[n+1], it remains to prove that⋃

i∈LMi
Υ [n] =MΥ [n]. This is indeed the case sinceMΥ [n] = induction(T cind)(deduc-

tion(T cded)(ρc(n))), (
⋃
i∈LMi

Υ [n]) = induction (Tind)(deduction(Tded)(
⋃
i∈L ρ

i(n))),
T c = T and

⋃
i∈L ρ

i(n) = ρc(n) for the inductive assumption.

5 Conclusion

Pushed by recent trends of highly distributed systems, we propose the semantics
of a distributed version of Datalog¬ in synchronous settings. We introduced a
new type of Relational Transducer [3] and Transducer network [6] tailored for
synchronous distributed systems, and sketched the model-theoretic semantics of
distributed Datalog programs for such systems.

References

1. S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A rule-based language for
web data management. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS ’11, pages 293–304,
New York, NY, USA, 2011. ACM.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational transducers for
electronic commerce. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, PODS ’98, pages 179–187,
New York, NY, USA, 1998. ACM.

4. P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears.
Boom analytics: exploring data-centric, declarative programming for the cloud. In
Proceedings of the 5th European conference on Computer systems, EuroSys ’10,
pages 223–236, New York, NY, USA, 2010. ACM.

5. P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and R. Sears.
Dedalus: Datalog in time and space. In de Moor et al. [23], pages 262–281.

20 Matteo Interlandi, Letizia Tanca, Sonia Bergamaschi

6. T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for
declarative networking. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS ’11, pages 283–292,
New York, NY, USA, 2011. ACM.

7. T. J. Ameloot and J. Van den Bussche. Deciding eventual consistency for a simple
class of relational transducer networks. In Proceedings of the 15th International
Conference on Database Theory, ICDT ’12, pages 86–98, New York, NY, USA,
2012. ACM.

8. H. E. Bal and A. S. Tanenbaum. Distributed programming with shared data.
Comput. Lang., 16(2):129–146, May 1991.

9. M. Baudinet, J. Chomicki, and P. Wolper. Temporal deductive databases. In
Temporal Databases, pages 294–320. 1993.

10. C. Beeri, S. Naqvi, R. Ramakrishnan, O. Shmueli, and S. Tsur. Sets and negation
in a logic data base language (ldl1). In Proceedings of the sixth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, PODS ’87, pages
21–37, New York, NY, USA, 1987. ACM.

11. Bloom Language http://boom.cs.berkeley.edu/index.html.
12. Cascalog Libray https://github.com/nathanmarz/cascalog.
13. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog

(and never dared to ask). IEEE Trans. on Knowl. and Data Eng., 1(1):146–166,
Mar. 1989.

14. P. Cholak and H. A. Blair. The complexity of local stratification. Fundam. Inform.,
21(4):333–344, 1994.

15. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, Jan. 2008.

16. J. M. Hellerstein. The declarative imperative: experiences and conjectures in dis-
tributed logic. SIGMOD Rec., 39:5–19, September 2010.

17. D. B. Kemp and P. J. Stuckey. Semantics of logic programs with aggregates. In
ISLP, pages 387–401, 1991.

18. P. Koutris, D. Suciu. Parallel evaluation of conjunctive queries. In Proceedings
of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’11, pages 223–234, New York, NY, USA, 2011. ACM.

19. G. Lausen, B. Ludäscher, and W. May. On active deductive databases: The
statelog approach. In International Seminar on Logic Databases and the Meaning
of Change, Transactions and Change in Logic Databases, ILPS ’97, pages 69–106,
London, UK, UK, 1998. Springer-Verlag.

20. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Im-
plementing declarative overlays. In Proceedings of the twentieth ACM symposium
on Operating systems principles, SOSP ’05, pages 75–90, New York, NY, USA,
2005. ACM.

21. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking: language, ex-
ecution and optimization. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, SIGMOD ’06, pages 97–108, New York, NY,
USA, 2006. ACM.

22. B. Ludäscher. Integration of Active and Deductive Database Rules, volume 45 of
DISDBIS. Infix Verlag, St. Augustin, Germany, 1998.

23. O. de Moor, G. Gottlob, T. Furche, and A. J. Sellers, editors. Datalog Reloaded -
First International Workshop, Datalog 2010,Oxford, UK, March 16-19, 2010. Re-
vised Selected Papers, volume 6702 of Lecture Notes in Computer Science. Springer,
2011.

Datalog in Time and Space, Synchronously 21

24. B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algo-
rithms. Computer, 24(8):52–60, Aug. 1991.

25. J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared memory: Concepts
and systems. IEEE Parallel Distrib. Technol., 4(2):63–79, June 1996.

26. T. C. Przymusinski. On the declarative semantics of deductive databases and logic
programs, pages 193–216. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1988.

27. R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems. J.
Log. Program., 23(2):125–149, 1995.

28. R. T. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9):35–42,
1986.

29. M.-O. Stehr, M. Kim, and C. Talcott. Toward distributed declarative control of
networked cyber-physical systems. In Proceedings of the 7th international con-
ference on Ubiquitous intelligence and computing, UIC’10, pages 397–413, Berlin,
Heidelberg, 2010. Springer-Verlag.

30. C. Zaniolo. Advanced database systems. Morgan Kaufmann series in data manage-
ment systems. Morgan Kaufmann Publishers, 1997.

31. W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and
maintenance of network provenance at internet-scale. In Proceedings of the 2010
international conference on Management of data, SIGMOD ’10, pages 615–626,
New York, NY, USA, 2010. ACM.

